1 module raymath;
2 
3 import raylib;
4 
5 /**********************************************************************************************
6 *
7 *   raymath v1.2 - Math functions to work with Vector3, Matrix and Quaternions
8 *
9 *   CONFIGURATION:
10 *
11 *   #define RAYMATH_IMPLEMENTATION
12 *       Generates the implementation of the library into the included file.
13 *       If not defined, the library is in header only mode and can be included in other headers
14 *       or source files without problems. But only ONE file should hold the implementation.
15 *
16 *   #define RAYMATH_HEADER_ONLY
17 *       Define static inline functions code, so #include header suffices for use.
18 *       This may use up lots of memory.
19 *
20 *   #define RAYMATH_STANDALONE
21 *       Avoid raylib.h header inclusion in this file.
22 *       Vector3 and Matrix data types are defined internally in raymath module.
23 *
24 *
25 *   LICENSE: zlib/libpng
26 *
27 *   Copyright (c) 2015-2020 Ramon Santamaria (@raysan5)
28 *
29 *   This software is provided "as-is", without any express or implied warranty. In no event
30 *   will the authors be held liable for any damages arising from the use of this software.
31 *
32 *   Permission is granted to anyone to use this software for any purpose, including commercial
33 *   applications, and to alter it and redistribute it freely, subject to the following restrictions:
34 *
35 *     1. The origin of this software must not be misrepresented; you must not claim that you
36 *     wrote the original software. If you use this software in a product, an acknowledgment
37 *     in the product documentation would be appreciated but is not required.
38 *
39 *     2. Altered source versions must be plainly marked as such, and must not be misrepresented
40 *     as being the original software.
41 *
42 *     3. This notice may not be removed or altered from any source distribution.
43 *
44 **********************************************************************************************/
45 
46 extern (C) @nogc nothrow:
47 
48 //#define RAYMATH_STANDALONE      // NOTE: To use raymath as standalone lib, just uncomment this line
49 //#define RAYMATH_HEADER_ONLY     // NOTE: To compile functions as static inline, uncomment this line
50 
51 import raylib; // Required for structs: Vector3, Matrix
52 
53 //----------------------------------------------------------------------------------
54 // Defines and Macros
55 //----------------------------------------------------------------------------------
56 
57 // Return float vector for Matrix
58 
59 extern (D) auto MatrixToFloat(T)(auto ref T mat)
60 {
61     return MatrixToFloatV(mat).v;
62 }
63 
64 // Return float vector for Vector3
65 
66 extern (D) auto Vector3ToFloat(T)(auto ref T vec)
67 {
68     return Vector3ToFloatV(vec).v;
69 }
70 
71 // NOTE: Helper types to be used instead of array return types for *ToFloat functions
72 struct float3
73 {
74     float[3] v;
75 }
76 
77 struct float16
78 {
79     float[16] v;
80 }
81 
82 import core.stdc.math; // Required for: sinf(), cosf(), sqrtf(), tan(), fabs()
83 
84 //----------------------------------------------------------------------------------
85 // Module Functions Definition - Utils math
86 //----------------------------------------------------------------------------------
87 // Clamp float value
88 static float Clamp(float value, float min, float max)
89 {
90     const float res = value < min ? min : value;
91     return res > max ? max : res;
92 }
93 
94 // Calculate linear interpolation between two floats
95 static float Lerp(float start, float end, float amount)
96 {
97     return start + amount*(end - start);
98 }
99 
100 // Normalize input value within input range
101 static float Normalize(float value, float start, float end)
102 {
103     return (value - start) / (end - start);
104 }
105 
106 // Remap input value within input range to output range
107 static float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd) 
108 {
109     return (value - inputStart) / (inputEnd - inputStart) * (outputEnd - outputStart) + outputStart;
110 }
111 
112 //----------------------------------------------------------------------------------
113 // Module Functions Definition - Vector2 math
114 //----------------------------------------------------------------------------------
115 
116 // Vector with components value 0.0f
117 static Vector2 Vector2Zero()
118 {
119     Vector2 result = { 0.0f, 0.0f };
120     return result;
121 }
122 
123 // Vector with components value 1.0f
124 static Vector2 Vector2One()
125 {
126     Vector2 result = { 1.0f, 1.0f };
127     return result;
128 }
129 
130 // Add two vectors (v1 + v2)
131 static Vector2 Vector2Add(Vector2 v1, Vector2 v2)
132 {
133     Vector2 result = { v1.x + v2.x, v1.y + v2.y };
134     return result;
135 }
136 
137 // Add vector and float value
138 static Vector2 Vector2AddValue(Vector2 v, float add)
139 {
140     Vector2 result = { v.x + add, v.y + add };
141     return result;
142 }
143 
144 // Subtract two vectors (v1 - v2)
145 static Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
146 {
147     Vector2 result = { v1.x - v2.x, v1.y - v2.y };
148     return result;
149 }
150 
151 // Subtract vector by float value
152 static Vector2 Vector2SubtractValue(Vector2 v, float sub)
153 {
154     Vector2 result = { v.x - sub, v.y - sub };
155     return result;
156 }
157 
158 // Calculate vector length
159 static float Vector2Length(Vector2 v)
160 {
161     float result = sqrtf((v.x*v.x) + (v.y*v.y));
162     return result;
163 }
164 
165 // Calculate vector square length
166 static float Vector2LengthSqr(Vector2 v)
167 {
168     float result = (v.x*v.x) + (v.y*v.y);
169     return result;
170 }
171 
172 // Calculate two vectors dot product
173 static float Vector2DotProduct(Vector2 v1, Vector2 v2)
174 {
175     float result = (v1.x*v2.x + v1.y*v2.y);
176     return result;
177 }
178 
179 // Calculate distance between two vectors
180 static float Vector2Distance(Vector2 v1, Vector2 v2)
181 {
182     float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
183     return result;
184 }
185 
186 // Calculate angle from two vectors in X-axis
187 static float Vector2Angle(Vector2 v1, Vector2 v2)
188 {
189     float result = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
190     if (result < 0) result += 360.0f;
191     return result;
192 }
193 
194 // Scale vector (multiply by value)
195 static Vector2 Vector2Scale(Vector2 v, float scale)
196 {
197     Vector2 result = { v.x*scale, v.y*scale };
198     return result;
199 }
200 
201 // Multiply vector by vector
202 static Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
203 {
204     Vector2 result = { v1.x*v2.x, v1.y*v2.y };
205     return result;
206 }
207 
208 // Negate vector
209 static Vector2 Vector2Negate(Vector2 v)
210 {
211     Vector2 result = { -v.x, -v.y };
212     return result;
213 }
214 
215 // Divide vector by vector
216 static Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
217 {
218     Vector2 result = { v1.x/v2.x, v1.y/v2.y };
219     return result;
220 }
221 
222 // Normalize provided vector
223 static Vector2 Vector2Normalize(Vector2 v)
224 {
225     Vector2 result = Vector2Scale(v, 1/Vector2Length(v));
226     return result;
227 }
228 
229 // Calculate linear interpolation between two vectors
230 static Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
231 {
232     Vector2 result = { 0 };
233 
234     result.x = v1.x + amount*(v2.x - v1.x);
235     result.y = v1.y + amount*(v2.y - v1.y);
236 
237     return result;
238 }
239 
240 // Rotate Vector by float in Degrees.
241 static Vector2 Vector2Rotate(Vector2 v, float degs)
242 {
243     float rads = degs*DEG2RAD;
244     Vector2 result = {v.x * cosf(rads) - v.y * sinf(rads) , v.x * sinf(rads) + v.y * cosf(rads) };
245     return result;
246 }
247 
248 // Move Vector towards target
249 static Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance)
250 {
251     Vector2 result = { 0 };
252     float dx = target.x - v.x;
253     float dy = target.y - v.y;
254     float value = (dx*dx) + (dy*dy);
255     
256     if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) result = target;
257     
258     float dist = sqrtf(value);
259     
260     result.x = v.x + dx/dist*maxDistance;
261     result.y = v.y + dy/dist*maxDistance;
262     
263     return result;
264 }
265 
266 //----------------------------------------------------------------------------------
267 // Module Functions Definition - Vector3 math
268 //----------------------------------------------------------------------------------
269 
270 // Vector with components value 0.0f
271 static Vector3 Vector3Zero()
272 {
273     Vector3 result = { 0.0f, 0.0f, 0.0f };
274     return result;
275 }
276 
277 // Vector with components value 1.0f
278 static Vector3 Vector3One()
279 {
280     Vector3 result = { 1.0f, 1.0f, 1.0f };
281     return result;
282 }
283 
284 // Add two vectors
285 static Vector3 Vector3Add(Vector3 v1, Vector3 v2)
286 {
287     Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
288     return result;
289 }
290 
291 // Add vector and float value
292 static Vector3 Vector3AddValue(Vector3 v, float add)
293 {
294     Vector3 result = { v.x + add, v.y + add, v.z + add };
295     return result;
296 }
297 
298 // Subtract two vectors
299 static Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
300 {
301     Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
302     return result;
303 }
304 
305 // Subtract vector by float value
306 static Vector3 Vector3SubtractValue(Vector3 v, float sub)
307 {
308     Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
309     return result;
310 }
311 
312 // Multiply vector by scalar
313 static Vector3 Vector3Scale(Vector3 v, float scalar)
314 {
315     Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
316     return result;
317 }
318 
319 // Multiply vector by vector
320 static Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
321 {
322     Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
323     return result;
324 }
325 
326 // Calculate two vectors cross product
327 static Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
328 {
329     Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
330     return result;
331 }
332 
333 // Calculate one vector perpendicular vector
334 static Vector3 Vector3Perpendicular(Vector3 v)
335 {
336     Vector3 result = { 0 };
337 
338     float min = cast(float) fabs(v.x);
339     Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
340 
341     if (fabs(v.y) < min)
342     {
343         min = cast(float) fabs(v.y);
344         Vector3 tmp = {0.0f, 1.0f, 0.0f};
345         cardinalAxis = tmp;
346     }
347 
348     if (fabs(v.z) < min)
349     {
350         Vector3 tmp = {0.0f, 0.0f, 1.0f};
351         cardinalAxis = tmp;
352     }
353 
354     result = Vector3CrossProduct(v, cardinalAxis);
355 
356     return result;
357 }
358 
359 // Calculate vector length
360 static float Vector3Length(const Vector3 v)
361 {
362     float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
363     return result;
364 }
365 
366 // Calculate vector square length
367 static float Vector3LengthSqr(const Vector3 v)
368 {
369     float result = v.x*v.x + v.y*v.y + v.z*v.z;
370     return result;
371 }
372 
373 // Calculate two vectors dot product
374 static float Vector3DotProduct(Vector3 v1, Vector3 v2)
375 {
376     float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
377     return result;
378 }
379 
380 // Calculate distance between two vectors
381 static float Vector3Distance(Vector3 v1, Vector3 v2)
382 {
383     float dx = v2.x - v1.x;
384     float dy = v2.y - v1.y;
385     float dz = v2.z - v1.z;
386     float result = sqrtf(dx*dx + dy*dy + dz*dz);
387     return result;
388 }
389 
390 // Negate provided vector (invert direction)
391 static Vector3 Vector3Negate(Vector3 v)
392 {
393     Vector3 result = { -v.x, -v.y, -v.z };
394     return result;
395 }
396 
397 // Divide vector by vector
398 static Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
399 {
400     Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
401     return result;
402 }
403 
404 // Normalize provided vector
405 static Vector3 Vector3Normalize(Vector3 v)
406 {
407     Vector3 result = v;
408 
409     float length, ilength;
410     length = Vector3Length(v);
411     if (length == 0.0f) length = 1.0f;
412     ilength = 1.0f/length;
413 
414     result.x *= ilength;
415     result.y *= ilength;
416     result.z *= ilength;
417 
418     return result;
419 }
420 
421 // Orthonormalize provided vectors
422 // Makes vectors normalized and orthogonal to each other
423 // Gram-Schmidt function implementation
424 static void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
425 {
426     *v1 = Vector3Normalize(*v1);
427     Vector3 vn = Vector3CrossProduct(*v1, *v2);
428     vn = Vector3Normalize(vn);
429     *v2 = Vector3CrossProduct(vn, *v1);
430 }
431 
432 // Transforms a Vector3 by a given Matrix
433 static Vector3 Vector3Transform(Vector3 v, Matrix mat)
434 {
435     Vector3 result = { 0 };
436     float x = v.x;
437     float y = v.y;
438     float z = v.z;
439 
440     result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
441     result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
442     result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
443 
444     return result;
445 }
446 
447 // Transform a vector by quaternion rotation
448 static Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
449 {
450     Vector3 result = { 0 };
451 
452     result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
453     result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
454     result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
455 
456     return result;
457 }
458 
459 // Calculate linear interpolation between two vectors
460 static Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
461 {
462     Vector3 result = { 0 };
463 
464     result.x = v1.x + amount*(v2.x - v1.x);
465     result.y = v1.y + amount*(v2.y - v1.y);
466     result.z = v1.z + amount*(v2.z - v1.z);
467 
468     return result;
469 }
470 
471 // Calculate reflected vector to normal
472 static Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
473 {
474     // I is the original vector
475     // N is the normal of the incident plane
476     // R = I - (2*N*( DotProduct[ I,N] ))
477 
478     Vector3 result = { 0 };
479 
480     float dotProduct = Vector3DotProduct(v, normal);
481 
482     result.x = v.x - (2.0f*normal.x)*dotProduct;
483     result.y = v.y - (2.0f*normal.y)*dotProduct;
484     result.z = v.z - (2.0f*normal.z)*dotProduct;
485 
486     return result;
487 }
488 
489 // Return min value for each pair of components
490 static Vector3 Vector3Min(Vector3 v1, Vector3 v2)
491 {
492     Vector3 result = { 0 };
493 
494     result.x = fminf(v1.x, v2.x);
495     result.y = fminf(v1.y, v2.y);
496     result.z = fminf(v1.z, v2.z);
497 
498     return result;
499 }
500 
501 // Return max value for each pair of components
502 static Vector3 Vector3Max(Vector3 v1, Vector3 v2)
503 {
504     Vector3 result = { 0 };
505 
506     result.x = fmaxf(v1.x, v2.x);
507     result.y = fmaxf(v1.y, v2.y);
508     result.z = fmaxf(v1.z, v2.z);
509 
510     return result;
511 }
512 
513 // Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
514 // NOTE: Assumes P is on the plane of the triangle
515 static Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
516 {
517     //Vector v0 = b - a, v1 = c - a, v2 = p - a;
518 
519     Vector3 v0 = Vector3Subtract(b, a);
520     Vector3 v1 = Vector3Subtract(c, a);
521     Vector3 v2 = Vector3Subtract(p, a);
522     float d00 = Vector3DotProduct(v0, v0);
523     float d01 = Vector3DotProduct(v0, v1);
524     float d11 = Vector3DotProduct(v1, v1);
525     float d20 = Vector3DotProduct(v2, v0);
526     float d21 = Vector3DotProduct(v2, v1);
527 
528     float denom = d00*d11 - d01*d01;
529 
530     Vector3 result = { 0 };
531 
532     result.y = (d11*d20 - d01*d21)/denom;
533     result.z = (d00*d21 - d01*d20)/denom;
534     result.x = 1.0f - (result.z + result.y);
535 
536     return result;
537 }
538 
539 // Returns Vector3 as float array
540 static float3 Vector3ToFloatV(Vector3 v)
541 {
542     float3 buffer = { 0 };
543 
544     buffer.v[0] = v.x;
545     buffer.v[1] = v.y;
546     buffer.v[2] = v.z;
547 
548     return buffer;
549 }
550 
551 //----------------------------------------------------------------------------------
552 // Module Functions Definition - Matrix math
553 //----------------------------------------------------------------------------------
554 
555 // Compute matrix determinant
556 static float MatrixDeterminant(Matrix mat)
557 {
558     // Cache the matrix values (speed optimization)
559     float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
560     float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
561     float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
562     float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
563 
564     float result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
565                    a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
566                    a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
567                    a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
568                    a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
569                    a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
570 
571     return result;
572 }
573 
574 // Returns the trace of the matrix (sum of the values along the diagonal)
575 static float MatrixTrace(Matrix mat)
576 {
577     float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
578     return result;
579 }
580 
581 // Transposes provided matrix
582 static Matrix MatrixTranspose(Matrix mat)
583 {
584     Matrix result = { 0 };
585 
586     result.m0 = mat.m0;
587     result.m1 = mat.m4;
588     result.m2 = mat.m8;
589     result.m3 = mat.m12;
590     result.m4 = mat.m1;
591     result.m5 = mat.m5;
592     result.m6 = mat.m9;
593     result.m7 = mat.m13;
594     result.m8 = mat.m2;
595     result.m9 = mat.m6;
596     result.m10 = mat.m10;
597     result.m11 = mat.m14;
598     result.m12 = mat.m3;
599     result.m13 = mat.m7;
600     result.m14 = mat.m11;
601     result.m15 = mat.m15;
602 
603     return result;
604 }
605 
606 // Invert provided matrix
607 static Matrix MatrixInvert(Matrix mat)
608 {
609     Matrix result = { 0 };
610 
611     // Cache the matrix values (speed optimization)
612     float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
613     float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
614     float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
615     float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
616 
617     float b00 = a00*a11 - a01*a10;
618     float b01 = a00*a12 - a02*a10;
619     float b02 = a00*a13 - a03*a10;
620     float b03 = a01*a12 - a02*a11;
621     float b04 = a01*a13 - a03*a11;
622     float b05 = a02*a13 - a03*a12;
623     float b06 = a20*a31 - a21*a30;
624     float b07 = a20*a32 - a22*a30;
625     float b08 = a20*a33 - a23*a30;
626     float b09 = a21*a32 - a22*a31;
627     float b10 = a21*a33 - a23*a31;
628     float b11 = a22*a33 - a23*a32;
629 
630     // Calculate the invert determinant (inlined to avoid double-caching)
631     float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
632 
633     result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
634     result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
635     result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
636     result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
637     result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
638     result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
639     result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
640     result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
641     result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
642     result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
643     result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
644     result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
645     result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
646     result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
647     result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
648     result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
649 
650     return result;
651 }
652 
653 // Normalize provided matrix
654 static Matrix MatrixNormalize(Matrix mat)
655 {
656     Matrix result = { 0 };
657 
658     float det = MatrixDeterminant(mat);
659 
660     result.m0 = mat.m0/det;
661     result.m1 = mat.m1/det;
662     result.m2 = mat.m2/det;
663     result.m3 = mat.m3/det;
664     result.m4 = mat.m4/det;
665     result.m5 = mat.m5/det;
666     result.m6 = mat.m6/det;
667     result.m7 = mat.m7/det;
668     result.m8 = mat.m8/det;
669     result.m9 = mat.m9/det;
670     result.m10 = mat.m10/det;
671     result.m11 = mat.m11/det;
672     result.m12 = mat.m12/det;
673     result.m13 = mat.m13/det;
674     result.m14 = mat.m14/det;
675     result.m15 = mat.m15/det;
676 
677     return result;
678 }
679 
680 // Returns identity matrix
681 static Matrix MatrixIdentity()
682 {
683     Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
684                       0.0f, 1.0f, 0.0f, 0.0f,
685                       0.0f, 0.0f, 1.0f, 0.0f,
686                       0.0f, 0.0f, 0.0f, 1.0f };
687 
688     return result;
689 }
690 
691 // Add two matrices
692 static Matrix MatrixAdd(Matrix left, Matrix right)
693 {
694     Matrix result = MatrixIdentity();
695 
696     result.m0 = left.m0 + right.m0;
697     result.m1 = left.m1 + right.m1;
698     result.m2 = left.m2 + right.m2;
699     result.m3 = left.m3 + right.m3;
700     result.m4 = left.m4 + right.m4;
701     result.m5 = left.m5 + right.m5;
702     result.m6 = left.m6 + right.m6;
703     result.m7 = left.m7 + right.m7;
704     result.m8 = left.m8 + right.m8;
705     result.m9 = left.m9 + right.m9;
706     result.m10 = left.m10 + right.m10;
707     result.m11 = left.m11 + right.m11;
708     result.m12 = left.m12 + right.m12;
709     result.m13 = left.m13 + right.m13;
710     result.m14 = left.m14 + right.m14;
711     result.m15 = left.m15 + right.m15;
712 
713     return result;
714 }
715 
716 // Subtract two matrices (left - right)
717 static Matrix MatrixSubtract(Matrix left, Matrix right)
718 {
719     Matrix result = MatrixIdentity();
720 
721     result.m0 = left.m0 - right.m0;
722     result.m1 = left.m1 - right.m1;
723     result.m2 = left.m2 - right.m2;
724     result.m3 = left.m3 - right.m3;
725     result.m4 = left.m4 - right.m4;
726     result.m5 = left.m5 - right.m5;
727     result.m6 = left.m6 - right.m6;
728     result.m7 = left.m7 - right.m7;
729     result.m8 = left.m8 - right.m8;
730     result.m9 = left.m9 - right.m9;
731     result.m10 = left.m10 - right.m10;
732     result.m11 = left.m11 - right.m11;
733     result.m12 = left.m12 - right.m12;
734     result.m13 = left.m13 - right.m13;
735     result.m14 = left.m14 - right.m14;
736     result.m15 = left.m15 - right.m15;
737 
738     return result;
739 }
740 
741 // Returns translation matrix
742 static Matrix MatrixTranslate(float x, float y, float z)
743 {
744     Matrix result = { 1.0f, 0.0f, 0.0f, x,
745                       0.0f, 1.0f, 0.0f, y,
746                       0.0f, 0.0f, 1.0f, z,
747                       0.0f, 0.0f, 0.0f, 1.0f };
748 
749     return result;
750 }
751 
752 // Create rotation matrix from axis and angle
753 // NOTE: Angle should be provided in radians
754 static Matrix MatrixRotate(Vector3 axis, float angle)
755 {
756     Matrix result = { 0 };
757 
758     float x = axis.x, y = axis.y, z = axis.z;
759 
760     float length = sqrtf(x*x + y*y + z*z);
761 
762     if ((length != 1.0f) && (length != 0.0f))
763     {
764         length = 1.0f/length;
765         x *= length;
766         y *= length;
767         z *= length;
768     }
769 
770     float sinres = sinf(angle);
771     float cosres = cosf(angle);
772     float t = 1.0f - cosres;
773 
774     result.m0  = x*x*t + cosres;
775     result.m1  = y*x*t + z*sinres;
776     result.m2  = z*x*t - y*sinres;
777     result.m3  = 0.0f;
778 
779     result.m4  = x*y*t - z*sinres;
780     result.m5  = y*y*t + cosres;
781     result.m6  = z*y*t + x*sinres;
782     result.m7  = 0.0f;
783 
784     result.m8  = x*z*t + y*sinres;
785     result.m9  = y*z*t - x*sinres;
786     result.m10 = z*z*t + cosres;
787     result.m11 = 0.0f;
788 
789     result.m12 = 0.0f;
790     result.m13 = 0.0f;
791     result.m14 = 0.0f;
792     result.m15 = 1.0f;
793 
794     return result;
795 }
796 
797 // Returns xyz-rotation matrix (angles in radians)
798 static Matrix MatrixRotateXYZ(Vector3 ang)
799 {
800     Matrix result = MatrixIdentity();
801 
802     float cosz = cosf(-ang.z);
803     float sinz = sinf(-ang.z);
804     float cosy = cosf(-ang.y);
805     float siny = sinf(-ang.y);
806     float cosx = cosf(-ang.x);
807     float sinx = sinf(-ang.x);
808 
809     result.m0 = cosz * cosy;
810     result.m4 = (cosz * siny * sinx) - (sinz * cosx);
811     result.m8 = (cosz * siny * cosx) + (sinz * sinx);
812 
813     result.m1 = sinz * cosy;
814     result.m5 = (sinz * siny * sinx) + (cosz * cosx);
815     result.m9 = (sinz * siny * cosx) - (cosz * sinx);
816 
817     result.m2 = -siny;
818     result.m6 = cosy * sinx;
819     result.m10= cosy * cosx;
820 
821     return result;
822 }
823 
824 // Returns x-rotation matrix (angle in radians)
825 static Matrix MatrixRotateX(float angle)
826 {
827     Matrix result = MatrixIdentity();
828 
829     float cosres = cosf(angle);
830     float sinres = sinf(angle);
831 
832     result.m5 = cosres;
833     result.m6 = -sinres;
834     result.m9 = sinres;
835     result.m10 = cosres;
836 
837     return result;
838 }
839 
840 // Returns y-rotation matrix (angle in radians)
841 static Matrix MatrixRotateY(float angle)
842 {
843     Matrix result = MatrixIdentity();
844 
845     float cosres = cosf(angle);
846     float sinres = sinf(angle);
847 
848     result.m0 = cosres;
849     result.m2 = sinres;
850     result.m8 = -sinres;
851     result.m10 = cosres;
852 
853     return result;
854 }
855 
856 // Returns z-rotation matrix (angle in radians)
857 static Matrix MatrixRotateZ(float angle)
858 {
859     Matrix result = MatrixIdentity();
860 
861     float cosres = cosf(angle);
862     float sinres = sinf(angle);
863 
864     result.m0 = cosres;
865     result.m1 = -sinres;
866     result.m4 = sinres;
867     result.m5 = cosres;
868 
869     return result;
870 }
871 
872 // Returns scaling matrix
873 static Matrix MatrixScale(float x, float y, float z)
874 {
875     Matrix result = { x, 0.0f, 0.0f, 0.0f,
876                       0.0f, y, 0.0f, 0.0f,
877                       0.0f, 0.0f, z, 0.0f,
878                       0.0f, 0.0f, 0.0f, 1.0f };
879 
880     return result;
881 }
882 
883 // Returns two matrix multiplication
884 // NOTE: When multiplying matrices... the order matters!
885 static Matrix MatrixMultiply(Matrix left, Matrix right)
886 {
887     Matrix result = { 0 };
888 
889     result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
890     result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
891     result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
892     result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
893     result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
894     result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
895     result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
896     result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
897     result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
898     result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
899     result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
900     result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
901     result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
902     result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
903     result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
904     result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
905 
906     return result;
907 }
908 
909 // Returns perspective projection matrix
910 static Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
911 {
912     Matrix result = { 0 };
913 
914     float rl = cast(float)(right - left);
915     float tb = cast(float)(top - bottom);
916     float fn = cast(float)(far - near);
917 
918     result.m0 = (cast(float) near*2.0f)/rl;
919     result.m1 = 0.0f;
920     result.m2 = 0.0f;
921     result.m3 = 0.0f;
922 
923     result.m4 = 0.0f;
924     result.m5 = (cast(float) near*2.0f)/tb;
925     result.m6 = 0.0f;
926     result.m7 = 0.0f;
927 
928     result.m8 = (cast(float)right + cast(float)left)/rl;
929     result.m9 = (cast(float)top + cast(float)bottom)/tb;
930     result.m10 = -(cast(float)far + cast(float)near)/fn;
931     result.m11 = -1.0f;
932 
933     result.m12 = 0.0f;
934     result.m13 = 0.0f;
935     result.m14 = -(cast(float)far*cast(float)near*2.0f)/fn;
936     result.m15 = 0.0f;
937 
938     return result;
939 }
940 
941 // Returns perspective projection matrix
942 // NOTE: Angle should be provided in radians
943 static Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
944 {
945     double top = near*tan(fovy*0.5);
946     double right = top*aspect;
947     Matrix result = MatrixFrustum(-right, right, -top, top, near, far);
948 
949     return result;
950 }
951 
952 // Returns orthographic projection matrix
953 static Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
954 {
955     Matrix result = { 0 };
956 
957     float rl = cast(float)(right - left);
958     float tb = cast(float)(top - bottom);
959     float fn = cast(float)(far - near);
960 
961     result.m0 = 2.0f/rl;
962     result.m1 = 0.0f;
963     result.m2 = 0.0f;
964     result.m3 = 0.0f;
965     result.m4 = 0.0f;
966     result.m5 = 2.0f/tb;
967     result.m6 = 0.0f;
968     result.m7 = 0.0f;
969     result.m8 = 0.0f;
970     result.m9 = 0.0f;
971     result.m10 = -2.0f/fn;
972     result.m11 = 0.0f;
973     result.m12 = -(cast(float)left + cast(float)right)/rl;
974     result.m13 = -(cast(float)top + cast(float)bottom)/tb;
975     result.m14 = -(cast(float)far + cast(float)near)/fn;
976     result.m15 = 1.0f;
977 
978     return result;
979 }
980 
981 // Returns camera look-at matrix (view matrix)
982 static Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
983 {
984     Matrix result = { 0 };
985 
986     Vector3 z = Vector3Subtract(eye, target);
987     z = Vector3Normalize(z);
988     Vector3 x = Vector3CrossProduct(up, z);
989     x = Vector3Normalize(x);
990     Vector3 y = Vector3CrossProduct(z, x);
991     y = Vector3Normalize(y);
992 
993     result.m0 = x.x;
994     result.m1 = x.y;
995     result.m2 = x.z;
996     result.m3 = 0.0f;
997     result.m4 = y.x;
998     result.m5 = y.y;
999     result.m6 = y.z;
1000     result.m7 = 0.0f;
1001     result.m8 = z.x;
1002     result.m9 = z.y;
1003     result.m10 = z.z;
1004     result.m11 = 0.0f;
1005     result.m12 = eye.x;
1006     result.m13 = eye.y;
1007     result.m14 = eye.z;
1008     result.m15 = 1.0f;
1009 
1010     result = MatrixInvert(result);
1011 
1012     return result;
1013 }
1014 
1015 // Returns float array of matrix data
1016 static float16 MatrixToFloatV(Matrix mat)
1017 {
1018     float16 buffer = { 0 };
1019 
1020     buffer.v[0] = mat.m0;
1021     buffer.v[1] = mat.m1;
1022     buffer.v[2] = mat.m2;
1023     buffer.v[3] = mat.m3;
1024     buffer.v[4] = mat.m4;
1025     buffer.v[5] = mat.m5;
1026     buffer.v[6] = mat.m6;
1027     buffer.v[7] = mat.m7;
1028     buffer.v[8] = mat.m8;
1029     buffer.v[9] = mat.m9;
1030     buffer.v[10] = mat.m10;
1031     buffer.v[11] = mat.m11;
1032     buffer.v[12] = mat.m12;
1033     buffer.v[13] = mat.m13;
1034     buffer.v[14] = mat.m14;
1035     buffer.v[15] = mat.m15;
1036 
1037     return buffer;
1038 }
1039 
1040 //----------------------------------------------------------------------------------
1041 // Module Functions Definition - Quaternion math
1042 //----------------------------------------------------------------------------------
1043 
1044 // Add two quaternions
1045 static Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
1046 {
1047     Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
1048     return result;
1049 }
1050 
1051 // Add quaternion and float value
1052 static Quaternion QuaternionAddValue(Quaternion q, float add)
1053 {
1054     Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
1055     return result;
1056 }
1057 
1058 // Subtract two quaternions
1059 static Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
1060 {
1061     Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
1062     return result;
1063 }
1064 
1065 // Subtract quaternion and float value
1066 static Quaternion QuaternionSubtractValue(Quaternion q, float sub)
1067 {
1068     Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
1069     return result;
1070 }
1071 
1072 // Returns identity quaternion
1073 static Quaternion QuaternionIdentity()
1074 {
1075     Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
1076     return result;
1077 }
1078 
1079 // Computes the length of a quaternion
1080 static float QuaternionLength(Quaternion q)
1081 {
1082     float result = cast(float)sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
1083     return result;
1084 }
1085 
1086 // Normalize provided quaternion
1087 static Quaternion QuaternionNormalize(Quaternion q)
1088 {
1089     Quaternion result = { 0 };
1090 
1091     float length, ilength;
1092     length = QuaternionLength(q);
1093     if (length == 0.0f) length = 1.0f;
1094     ilength = 1.0f/length;
1095 
1096     result.x = q.x*ilength;
1097     result.y = q.y*ilength;
1098     result.z = q.z*ilength;
1099     result.w = q.w*ilength;
1100 
1101     return result;
1102 }
1103 
1104 // Invert provided quaternion
1105 static Quaternion QuaternionInvert(Quaternion q)
1106 {
1107     Quaternion result = q;
1108     float length = QuaternionLength(q);
1109     float lengthSq = length*length;
1110 
1111     if (lengthSq != 0.0)
1112     {
1113         float i = 1.0f/lengthSq;
1114 
1115         result.x *= -i;
1116         result.y *= -i;
1117         result.z *= -i;
1118         result.w *= i;
1119     }
1120 
1121     return result;
1122 }
1123 
1124 // Calculate two quaternion multiplication
1125 static Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
1126 {
1127     Quaternion result = { 0 };
1128 
1129     float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
1130     float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
1131 
1132     result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
1133     result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
1134     result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
1135     result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
1136 
1137     return result;
1138 }
1139 
1140 // Scale quaternion by float value
1141 static Quaternion QuaternionScale(Quaternion q, float mul)
1142 {
1143     Quaternion result = { 0 };
1144 
1145     float qax = q.x, qay = q.y, qaz = q.z, qaw = q.w;
1146 
1147     result.x = qax * mul + qaw * mul + qay * mul - qaz * mul;
1148     result.y = qay * mul + qaw * mul + qaz * mul - qax * mul;
1149     result.z = qaz * mul + qaw * mul + qax * mul - qay * mul;
1150     result.w = qaw * mul - qax * mul - qay * mul - qaz * mul;
1151 
1152     return result;
1153 }
1154 
1155 // Divide two quaternions
1156 static Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
1157 {
1158     Quaternion result = {q1.x / q2.x, q1.y / q2.y, q1.z / q2.z, q1.w / q2.w};
1159     return result;
1160 }
1161 
1162 // Calculate linear interpolation between two quaternions
1163 static Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
1164 {
1165     Quaternion result = { 0 };
1166 
1167     result.x = q1.x + amount*(q2.x - q1.x);
1168     result.y = q1.y + amount*(q2.y - q1.y);
1169     result.z = q1.z + amount*(q2.z - q1.z);
1170     result.w = q1.w + amount*(q2.w - q1.w);
1171 
1172     return result;
1173 }
1174 
1175 // Calculate slerp-optimized interpolation between two quaternions
1176 static Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
1177 {
1178     Quaternion result = QuaternionLerp(q1, q2, amount);
1179     result = QuaternionNormalize(result);
1180 
1181     return result;
1182 }
1183 
1184 // Calculates spherical linear interpolation between two quaternions
1185 static Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
1186 {
1187     Quaternion result = { 0 };
1188 
1189     float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
1190 
1191     if (fabs(cosHalfTheta) >= 1.0f) result = q1;
1192     else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
1193     else
1194     {
1195         float halfTheta = acosf(cosHalfTheta);
1196         float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
1197 
1198         if (fabs(sinHalfTheta) < 0.001f)
1199         {
1200             result.x = (q1.x*0.5f + q2.x*0.5f);
1201             result.y = (q1.y*0.5f + q2.y*0.5f);
1202             result.z = (q1.z*0.5f + q2.z*0.5f);
1203             result.w = (q1.w*0.5f + q2.w*0.5f);
1204         }
1205         else
1206         {
1207             float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
1208             float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
1209 
1210             result.x = (q1.x*ratioA + q2.x*ratioB);
1211             result.y = (q1.y*ratioA + q2.y*ratioB);
1212             result.z = (q1.z*ratioA + q2.z*ratioB);
1213             result.w = (q1.w*ratioA + q2.w*ratioB);
1214         }
1215     }
1216 
1217     return result;
1218 }
1219 
1220 // Calculate quaternion based on the rotation from one vector to another
1221 static Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
1222 {
1223     Quaternion result = { 0 };
1224 
1225     float cos2Theta = Vector3DotProduct(from, to);
1226     Vector3 cross = Vector3CrossProduct(from, to);
1227 
1228     result.x = cross.x;
1229     result.y = cross.y;
1230     result.z = cross.z;
1231     result.w = 1.0f + cos2Theta;     // NOTE: Added QuaternioIdentity()
1232 
1233     // Normalize to essentially nlerp the original and identity to 0.5
1234     result = QuaternionNormalize(result);
1235 
1236     // Above lines are equivalent to:
1237     //Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
1238 
1239     return result;
1240 }
1241 
1242 // Returns a quaternion for a given rotation matrix
1243 static Quaternion QuaternionFromMatrix(Matrix mat)
1244 {
1245     Quaternion result = { 0 };
1246 
1247     float trace = MatrixTrace(mat);
1248 
1249     if (trace > 0.0f)
1250     {
1251         float s = sqrtf(trace + 1)*2.0f;
1252         float invS = 1.0f/s;
1253 
1254         result.w = s*0.25f;
1255         result.x = (mat.m6 - mat.m9)*invS;
1256         result.y = (mat.m8 - mat.m2)*invS;
1257         result.z = (mat.m1 - mat.m4)*invS;
1258     }
1259     else
1260     {
1261         float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;
1262 
1263         if (m00 > m11 && m00 > m22)
1264         {
1265             float s = cast(float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
1266             float invS = 1.0f/s;
1267 
1268             result.w = (mat.m6 - mat.m9)*invS;
1269             result.x = s*0.25f;
1270             result.y = (mat.m4 + mat.m1)*invS;
1271             result.z = (mat.m8 + mat.m2)*invS;
1272         }
1273         else if (m11 > m22)
1274         {
1275             float s = sqrtf(1.0f + m11 - m00 - m22)*2.0f;
1276             float invS = 1.0f/s;
1277 
1278             result.w = (mat.m8 - mat.m2)*invS;
1279             result.x = (mat.m4 + mat.m1)*invS;
1280             result.y = s*0.25f;
1281             result.z = (mat.m9 + mat.m6)*invS;
1282         }
1283         else
1284         {
1285             float s = sqrtf(1.0f + m22 - m00 - m11)*2.0f;
1286             float invS = 1.0f/s;
1287 
1288             result.w = (mat.m1 - mat.m4)*invS;
1289             result.x = (mat.m8 + mat.m2)*invS;
1290             result.y = (mat.m9 + mat.m6)*invS;
1291             result.z = s*0.25f;
1292         }
1293     }
1294 
1295     return result;
1296 }
1297 
1298 // Returns a matrix for a given quaternion
1299 static Matrix QuaternionToMatrix(Quaternion q)
1300 {
1301     Matrix result = { 0 };
1302 
1303     float x = q.x, y = q.y, z = q.z, w = q.w;
1304 
1305     float x2 = x + x;
1306     float y2 = y + y;
1307     float z2 = z + z;
1308 
1309     float length = QuaternionLength(q);
1310     float lengthSquared = length*length;
1311 
1312     float xx = x*x2/lengthSquared;
1313     float xy = x*y2/lengthSquared;
1314     float xz = x*z2/lengthSquared;
1315 
1316     float yy = y*y2/lengthSquared;
1317     float yz = y*z2/lengthSquared;
1318     float zz = z*z2/lengthSquared;
1319 
1320     float wx = w*x2/lengthSquared;
1321     float wy = w*y2/lengthSquared;
1322     float wz = w*z2/lengthSquared;
1323 
1324     result.m0 = 1.0f - (yy + zz);
1325     result.m1 = xy - wz;
1326     result.m2 = xz + wy;
1327     result.m3 = 0.0f;
1328     result.m4 = xy + wz;
1329     result.m5 = 1.0f - (xx + zz);
1330     result.m6 = yz - wx;
1331     result.m7 = 0.0f;
1332     result.m8 = xz - wy;
1333     result.m9 = yz + wx;
1334     result.m10 = 1.0f - (xx + yy);
1335     result.m11 = 0.0f;
1336     result.m12 = 0.0f;
1337     result.m13 = 0.0f;
1338     result.m14 = 0.0f;
1339     result.m15 = 1.0f;
1340 
1341     return result;
1342 }
1343 
1344 // Returns rotation quaternion for an angle and axis
1345 // NOTE: angle must be provided in radians
1346 static Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
1347 {
1348     Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
1349 
1350     if (Vector3Length(axis) != 0.0f)
1351 
1352     angle *= 0.5f;
1353 
1354     axis = Vector3Normalize(axis);
1355 
1356     float sinres = sinf(angle);
1357     float cosres = cosf(angle);
1358 
1359     result.x = axis.x*sinres;
1360     result.y = axis.y*sinres;
1361     result.z = axis.z*sinres;
1362     result.w = cosres;
1363 
1364     result = QuaternionNormalize(result);
1365 
1366     return result;
1367 }
1368 
1369 // Returns the rotation angle and axis for a given quaternion
1370 static void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
1371 {
1372     if (fabs(q.w) > 1.0f) q = QuaternionNormalize(q);
1373 
1374     Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
1375     float resAngle = 2.0f*acosf(q.w);
1376     float den = sqrtf(1.0f - q.w*q.w);
1377 
1378     if (den > 0.0001f)
1379     {
1380         resAxis.x = q.x/den;
1381         resAxis.y = q.y/den;
1382         resAxis.z = q.z/den;
1383     }
1384     else
1385     {
1386         // This occurs when the angle is zero.
1387         // Not a problem: just set an arbitrary normalized axis.
1388         resAxis.x = 1.0f;
1389     }
1390 
1391     *outAxis = resAxis;
1392     *outAngle = resAngle;
1393 }
1394 
1395 // Returns he quaternion equivalent to Euler angles
1396 static Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
1397 {
1398     Quaternion q = { 0 };
1399 
1400     float x0 = cosf(roll*0.5f);
1401     float x1 = sinf(roll*0.5f);
1402     float y0 = cosf(pitch*0.5f);
1403     float y1 = sinf(pitch*0.5f);
1404     float z0 = cosf(yaw*0.5f);
1405     float z1 = sinf(yaw*0.5f);
1406 
1407     q.x = x1*y0*z0 - x0*y1*z1;
1408     q.y = x0*y1*z0 + x1*y0*z1;
1409     q.z = x0*y0*z1 - x1*y1*z0;
1410     q.w = x0*y0*z0 + x1*y1*z1;
1411 
1412     return q;
1413 }
1414 
1415 // Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
1416 // NOTE: Angles are returned in a Vector3 struct in degrees
1417 static Vector3 QuaternionToEuler(Quaternion q)
1418 {
1419     Vector3 result = { 0 };
1420 
1421     // roll (x-axis rotation)
1422     float x0 = 2.0f*(q.w*q.x + q.y*q.z);
1423     float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
1424     result.x = atan2f(x0, x1)*RAD2DEG;
1425 
1426     // pitch (y-axis rotation)
1427     float y0 = 2.0f*(q.w*q.y - q.z*q.x);
1428     y0 = y0 > 1.0f ? 1.0f : y0;
1429     y0 = y0 < -1.0f ? -1.0f : y0;
1430     result.y = asinf(y0)*RAD2DEG;
1431 
1432     // yaw (z-axis rotation)
1433     float z0 = 2.0f*(q.w*q.z + q.x*q.y);
1434     float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
1435     result.z = atan2f(z0, z1)*RAD2DEG;
1436 
1437     return result;
1438 }
1439 
1440 // Transform a quaternion given a transformation matrix
1441 static Quaternion QuaternionTransform(Quaternion q, Matrix mat)
1442 {
1443     Quaternion result = { 0 };
1444 
1445     result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
1446     result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
1447     result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
1448     result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
1449 
1450     return result;
1451 }